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We study cooperative phenomena in the fluctuation-induced forces between a surface and a system
of neutral two-level quantum emitters prepared in a coherent collective state, showing that the total
Casimir-Polder force on the emitters can be modified via their mutual correlations. Particularly, we
find that a collection of emitters prepared in a super- or subradiant state experiences an enhanced or
suppressed collective vacuum-induced force, respectively. The collective nature of dispersion forces
can be understood as resulting from the interference between the different processes contributing to
the surface-modified resonant dipole-dipole interaction. Such cooperative fluctuation forces depend
singularly on the surface response at the resonance frequency of the emitters, thus being easily
maneuverable. Our results demonstrate the potential of collective phenomena as a new tool to
selectively tailor vacuum forces.

Introduction.—Collections of atoms and solid-state
quantum emitters coupled to waveguides and nanopho-
tonic structures offer a promising platform for scalable
quantum information processing [1–4]. The applica-
tions of such systems range from building long-ranged
quantum networks [5, 6], quantum memory devices [7–
9], and metrology [10], to facilitating new experimen-
tal regimes with exotic light-matter interactions [11, 12].
When interfacing small quantum systems and surfaces at
nanoscales, fluctuation-induced phenomena such as vac-
uum forces [13], surface-modified dissipation [14, 15] and
decoherence [16], become an imperative element of con-
sideration. The need to achieve better control and coher-
ence of photonic systems at that scale requires therefore
a detailed understanding of these phenomena, so as to
determine the extent to which they can be tailored and
controlled. In this work, we consider the possibility of us-
ing cooperative effects as a means to modify fluctuation-
induced forces, or Casimir-Polder (CP) forces [17, 18].

The study of cooperative effects has a long theoretical
and experimental history in the context of spontaneous
emission from a collection of atoms in optical cavities and
free space [19–25], and more recently near waveguides
[7, 26, 27]. Considering that surface-modified sponta-
neous emission is the dissipative counterpart to the dis-
persive vacuum forces [28], one can expect to observe col-
lective effects in dispersion forces as well. When consid-
ering vacuum forces, however, the role of quantum coher-
ence within or between the interacting bodies is seldom
discussed. While there have been some investigations
of the effect of correlations on the van der Waals forces
between two atoms in a cavity [29] and of interference
effects in vacuum forces in a three level system [30], a
general analysis of fluctuation-induced forces between an
N -particle system prepared in a coherent collective state
and a macroscopic body is yet to be explored in detail.
The goal of this letter is to analyze a proof of concept that

illustrates cooperative effects in Casimir-Polder forces be-
tween a surface and a system of N two-level quantum
emitters prepared in a Dicke state [19].

Model.—We consider a one-dimensional chain of N
two-level quantum emitters at a distance z0 from the
surface of a planar half-space medium, with each emit-
ter separated by a distance x0 from its nearest neighbor
(see Fig. 1 (a)). We assume that the half-space z < 0
is occupied by a medium of dielectric permittivity ε(ω),
while the upper half-space is vacuum. The ground and
excited levels for the nth emitter are denoted by |g〉n
and |e〉n respectively. The two levels are connected via
an electric-dipole transition with resonance transition
frequency ω0 and spontaneous emission rate Γ0, with
σ̂+
n = (σ̂−n )† = |e〉n 〈g|n being the ladder operators for

the corresponding transition. Defining the collective spin
operators Ĵk ≡

∑N
n=1 σ̂

k
n, the Dicke states |J,M〉, corre-

FIG. 1. (a) Schematic representation of N two-level quan-
tum emitters prepared in a collective state, interacting with
the vacuum EM field in the presence of a planar half-space
medium. (b) Constructive (destructive) interference between
the two processes shown in green and red leads to superradi-
ance (subradiance) in the surface-mediated resonant dipole-
dipole interactions.
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spond to [19]

Ĵ2 |J,M〉 = J(J + 1) |J,M〉 , and
Ĵz |J,M〉 = M |J,M〉 . (1)

The total Hamiltonian for the system of emitters and
the electromagnetic (EM) field is Ĥ = ĤS + ĤF +
Ĥint, where ĤS =

∑N
n=1 ~ω0σ̂

+
n σ̂
−
n is the Hamiltonian

for the two-level emitters, and ĤF is the Hamiltonian
for the medium-assisted EM field, which we assume to
be in the vacuum state. The electric dipole interaction
Hamiltonian between the emitters and the EM field is
Ĥint = −

∑N
n=1 d̂n · Ê (rn), where d̂n = dnσ̂+

n + d∗nσ̂−n is
the electric-dipole operator for the nth emitter and Ê (rn)
is the electric field at the position rn of the nth emitter
in the presence of the surface (see [31] for further de-
tails). We assume the dipole moments of all the emitters
dn ≡ d0ez to be equal in magnitude and aligned along
the z-direction.

The resulting dynamics of the density matrix ρ̂S of the
emitters, after tracing out the EM field, is described by
the Born-Markov master equation [32]

dρ̂S
dt

= − i
~

[
Ĥ ′S , ρ̂S

]
+ L′S [ρ̂S , ] (2)

where Ĥ ′S is the effective Hamiltonian for the emitters in
the interaction picture,

Ĥ ′S =~

[
N∑
n=1

Ω(+)
n σ̂+

n σ̂
−
n + Ω(−)

n σ̂−n σ̂
+
n +

∑
m>n

Ωmnσ̂−mσ̂+
n

]
.

(3)

Here Ω(−)
n = µ0ω0

~π
∫∞

0 dξ ξ2

ξ2+ω2
0
d∗n ·

¯̄Gsc (rn, rn, iξ) · dn,

and Ω(+)
n = −Ω(−)

n + Ω(res)
n are the Casimir-Polder shifts

for the ground and excited states of the nth emitter, re-
spectively. These shifts correspond to processes wherein
the nth dipole emits and reabsorbs a photon that is scat-
tered off the surface, with the photon propagator given
by the scattering Green’s tensor ¯̄Gsc (r, r′, ω), which is
defined as the solution to the homogeneous Helmholtz
equation [33, 35]

∇×∇× ¯̄Gsc (r, r′, ω)− ε (r, ω) ω
2

c2
¯̄Gsc (r, r′, ω) = 0.

(4)

Here ε (r, ω) is the space-dependent permittivity of the
medium. Note that in addition to the broadband off-
resonant contribution Ω(−)

n , the excited state has a reso-
nant contribution [34]

Ω(res)
n ≡ −µ0ω

2
0

~
Re
[
d∗n ·

¯̄Gsc (rn, rn, ω0) · dn
]
, (5)

that depends on the response of the environment at the
transition frequency ω0 of the emitters.

The surface-modified resonant dipole-dipole interac-
tion frequency Ωmn between the emitters n andm can be
expressed as the sum of a contribution Ω(free)

mn from the
resonant exchange of excitation between the two dipoles
via a photon propagating in free space, and a contribu-
tion Ω(sc)

mn from a photon scattered off the surface, see
Fig. 1 (b), with [36]

Ω(sc,free)
mn = −µ0ω

2
0

~
Re
[
d∗m ·

¯̄Gsc,free (rm, rn, ω0) · dn
]
.

(6)

Finally, the surface-modified Liouvillian is given by

L′S [ρS ] =
∑
m,n

Γmn
2
(
2σ̂−mρS σ̂+

n − σ̂+
mσ̂
−
n ρS − ρS σ̂+

mσ̂
−
n

)
,

(7)

where Γnn is the spontaneous emission rate for the ex-
cited state of the nth emitter, and Γmn = Γ(free)

mn + Γ(sc)
mn

is the dissipative coupling coefficient between emitters n
and m, with

Γ(sc,free)
mn = 2µ0ω

2
0

~
Im
[
d∗m ·

¯̄Gsc,free (rm, rn, ω0) · dn
]
.

(8)

From Eqs. (5) and (8) we have that the dissipative co-
efficients Γ(sc)

nn and Γ(sc,free)
mn are related to the resonant

dispersive shift Ω(res)
n , and the dipole-dipole interactions

Ω(sc,free)
mn , respectively, by the Kramers-Kronig relations

[37]. As we show below, this implies that a collective en-
hancement/suppression of resonant van der Waals forces
is concomitant with the cooperative behaviour of spon-
taneous emission.

Results.—We define the total CP force for the system
of emitters in a state ρ̂S as FCP [ρ̂S ] = − ∂

∂zTr
[
Ĥ ′S ρ̂S

]
,

so that

FCP [ρ̂S ] =− ~
N∑
n=1

[
∂

∂z
Ω(+)
n

〈
σ̂+
n σ̂
−
n

〉
+ ∂

∂z
Ω(−)
n

〈
σ̂−n σ̂

+
n

〉]
− ~

∑
m>n

∂

∂z
Ω(sc)
mn

〈
σ̂−mσ̂

+
n + σ̂−n σ̂

+
m

〉
, (9)

where all the averages are taken over the density operator
ρ̂S . The first term corresponds to the CP forces on the
individual emitters and the second term to the contribu-
tion from surface-modified dipole-dipole interactions.
Focusing on the second term in this expression we ob-

serve that while the operator average (〈σ̂−mσ̂+
n + σ̂−n σ̂

+
m〉)

depends on the correlations between the dipoles in the
state ρ̂S , the surface-modified dipole-dipole frequency
Ω(sc)
mn depends on the average distance of the emitters

from the surface. Hence, by preparing the emitters in a
suitable collective state ρ̂S , the CP force on an ensemble
can be modified. Since this modification then depends
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FIG. 2. (a) Collective Casimir-Polder force (in units of
~Γ0k0), and (b) spontaneous emission, (in units of Γ0), on
a system of two emitters near a gold surface, as a function
of the separation between the emitters. Here the distance of
the emitters from the surface is assumed to be k0z0 = 0.01.
(c) ((d)) Collective Casimir-Polder force, and (e) ((f)) spon-
taneous emission on two emitters as a function of their dis-
tance from the surface and their mutual separation, for the
dipoles prepared in the superradiant (subradiant) state |Ψsup〉
(|Ψsub〉). The surface is described by the Drude model with
a plasma frequency ωp ≈ 1.36× 1016 Hz, and loss parameter
γ ≈ 1.04× 1014 Hz for gold.

only on the resonant frequency response of the surface,
as evident from Eq. (6), it can thus be tailored easily by
engineering surface resonances around the resonance fre-
quency of the emitters. This is the central message of
this paper.

As a first illustration consider two emitters prepared
near a metal surface in one of the four internal states
|Ψg〉 ≡ |gg〉, |Ψe〉 ≡ |ee〉, |Ψsup〉 ≡ (|eg〉+ |ge〉) /

√
2,

or |Ψsub〉 ≡ (|eg〉 − |ge〉) /
√

2. We assume the surface
to be described by the Drude model with permittivity
ε (ω) = 1 − ω2

p/
(
ω2 + iωγ

)
, where ωp and γ are the

plasma frequency and loss parameter for the metal, re-
spectively. From Eq. (9) it follows that the force Fg(e) for
the state

∣∣Ψg(e)
〉
is the sum of the forces on the individual

emitters in the ground (excited) state,

Fe
g

= −~
[
∂

∂z
Ω(±)

1 + ∂

∂z
Ω(±)

2

]
≈ − 9ωp~Γ0k0

32(ωp ∓
√

2ω0)z̃4
0
.

(10)

Here the approximate second expression corresponds to
the non-retarded, or near-field, limit of the CP force valid
in the emitters-surface distance regime z̃0 ≡ k0z0 � 1,
with k0 ≡ ω0/c [18, 31, 33].
In contrast, the force on the super- and subradiant

states,

Fsup
sub

= −~
2
∂

∂z

[
Ω(res)

1 + Ω(res)
2 ± 2Ω(sc)

12

]
, (11)

includes a contribution that depends on the surface-
mediated dipole-dipole interaction in addition to the res-
onant CP shifts of the individual emitters. In the non-
retarded limit, it can be written as

Fsup
sub
≈ F∞ [1± f (x̃0, z̃0)] , (12)

where we have introduced the asymptotic force for in-
finitely separated emitters

F∞ ≡ −
9ω2

p~Γ0k0

16
(
ω2
p − 2ω2

0
)
z̃4

0
, (13)

and

f(x̃0, z̃0) ≡ 8z̃4
0

3

∫ ∞
0

dκκe−2κz̃0(κ2 + 1)J0

(
x̃0
√
κ2 + 1

)
(14)

quantifies the cooperativity due to geometric configu-
ration of the dipoles, with x̃0 ≡ k0x0. For coincident
dipoles and to lowest order in z̃0, limx0→0 f (x̃0, z̃0) ≈ 1.
As illustrated in Fig. 2 (a), at small emitter separa-

tions (x0 . z0) the cooperative contribution leads to
an enhanced and suppressed CP force for the super-
and subradiant state, respectively. For larger separa-
tions, limx0→∞ f (x̃0, z̃0) ≈ 0 and the interference effect
in the resonant dipole-dipole interaction is attenuated,
such that the super- and subradiant states experience an
incoherent average of the ground and excited state forces,
i.e., Fsup,sub ≈ (Fg + Fe) /2 = F∞. This is generally true
for a state |Ψθ,φ〉 ≡ cos θ |eg〉+ eiφ sin θ |ge〉 with a single
shared excitation between the emitters. We note that
the total force on the state |Ψθ,φ〉 is given by Fθ,φ =
−~ ∂

∂z

[
Ω(res)

1 + Ω(sc)
12 sin(2θ) cosφ

]
, which can vary be-

tween the super- and sub-radiant values in Eq. (12), de-
pending on the relative amplitudes (tan θ) and phase
(cosφ) between the states |eg〉 and |ge〉. The collec-
tive spontaneous emission for the superradiant (sub-
radiant) state, given by Γsup = 1/2 [Γ11 + Γ22 + 2Γ12]
(Γsub = 1/2 [Γ11 + Γ22 − 2Γ12]) is depicted in Fig. 2 (b)
[31].
In Fig. 2 (c)–(f), we provide a more comprehensive pic-

ture of the collective CP forces and spontaneous emis-
sion as a function of the geometrical configuration of the
dipoles. Assuming the emitter resonant wavelength to
be λ0 ≡ 2πc/ω0 ∼ 700 nm, we see from Fig. 2 (d) and
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FIG. 3. Superradiant boost in the time dependence of the
total attractive CP force for a collection of SiV emitters ini-
tially prepared in the excited level of the 737 nm transition
with a lifetime of 1.7 ns [41]. The emitters, with mutual sep-
aration x0 ≈ 1 nm, are assumed to be arranged in a linear
chain inside a cantilever placed at a distance of z0 ≈ 10 nm
from a gold surface. The inset shows the absolute value of
the maximum boost as a function of the number of emitters,
illustrating the N2 scaling of the force for the superradiant
state |J = N/2,M = 0〉.

Fig. 2 (f) that a subradiant state of two emitters sepa-
rated by x0 ∼1 nm, and at a distance z0 ∼10 nm from a
gold surface, experiences a total force that is suppressed
by a factor of Fsub/Fg ∼ 10−2 relative to the ground
state van der Waals force, with a spontaneous emission
Γsub/Γ0 ∼ 10−2. Thus one can see that subradiant CP
forces can be a potential way to avoid both dissipation
and undesirable CP attraction.

For a system of N dipoles the CP force on the Dicke
superradiant state |J = N/2,M = 0〉 can be written as

Fsup = −~
2

N∑
n=1

∂Ω(res)
n

∂z
− 2~

(
N−2
−1+N/2

)(
N
N/2
) ∑

m>n

∂Ω(sc)
mn

∂z
, (15)

where
(
N
k

)
is a binomial coefficient. In the limit of super-

posed dipoles, x0 → 0, it reduces to

lim
x0→0

Fsup=−
9ω2

p~Γ0k0

32
(
ω2
p − 2ω2

0
)
z̃4

0

(
N + N2

2

)
, (16)

which demonstrates the characteristic N2 scaling of the
collective CP force on the superradiant state, depicted
in the inset of Fig. 3, similar to free-space superradi-
ant spontaneous emission at small emitter separations
(x̃0 � 1) [20]. We also remark that, for N > 2, multi-
ple states in the degenerate subspace of subradiant Dicke
states with |J = 0,M = 0〉 exhibit a suppressed CP force,
see [31].

Discussion.—We have identified collective effects in
vacuum-induced dispersion forces that result from the in-
terference between the different channels contributing to
the surface-modified resonant dipole-dipole interaction,

as sketched in Fig. 1 (b). Such cooperative enhancement
or suppression of fluctuation forces occurs for the reso-
nant contribution to the total CP force, and can be phys-
ically understood as the dispersive counterpart to super-
or subradiance in spontaneous emission (see Eq. (12)).
In addition to the quantum correlations [42] in the state
of the emitters this contribution to the total CP force
depends only on the surface response at the resonance
frequency of the emitters, as can be seen from Eq. (6). It
can be thus controlled by suitably tailoring the response
of the surface around the resonant frequency of the emit-
ters.
Given that cooperative effects in optical dipole forces

on solid-state emitters in nanodiamonds have been dis-
cussed both theoretically and experimentally [43, 44], we
suggest that it should be possible to observe a boost in
the cooperative vacuum-induced forces by placing a sim-
ilar nanodiamond doped with emitters near a surface.
To estimate the feasibility of observing the collectively
enhanced CP force, we consider a system of N Silicon-
vacancy (SiV) centers embedded in a cantilever near a
metal surface [45, 46]. We assume that the emitters are
initially prepared in the excited state, and solve the su-
perradiance master equation, given by Eq. (2), numeri-
cally [47]. As the system decays in a collective manner,
it occupies the superradiant manifold transiently and ex-
periences an enhanced CP force, as shown in Fig. 3. For a
system of N = 10 SiV centers at a distance of z0 ≈ 10 nm
from a silica surface, we find a superradiant boost in the
collective CP force of ∆FCP ≈ 20 fN over a time scale of
∆τ ≈ 0.5 ns. [48] While the magnitude of the enhanced
force is large enough to be observable with current tech-
nologies [49], the time resolution required to sense the
enhancement would appear to pose an experimental chal-
lenge.
Alternatively, we note that Solano et al [26] have re-

cently demonstrated cooperative effects in a collection
of atoms placed near an optical fiber, wherein they ex-
ploited the van der Waals shifts to infer position of the
atoms relative to the fiber. We remark that in such an
experiment with atom-surface separations of ≈ 30 nm,
the cooperative van der Waals shift for a collection of
N = 6 atoms in a superradiant state can be as large as
∼ 100MHz, and can potentially provide an additional
way of inferring the collective state of the atoms.
In terms of potential applications of collective vacuum

forces, one can speculate that superradiant states could
be used to boost and probe fluctuation forces that are
otherwise too weak to be observable, as recently investi-
gated in [50]. Superradiant states of quantum emitters
might also be a resource for sensing surface properties
[51] and quantum metrological applications [52]. More
interestingly perhaps, given that subradiant states sup-
press undesirable Casimir-Polder attraction and exhibit
long lifetimes, they can be a useful resource for trapping
particles near surfaces.
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Supplemental Material

MEDIUM-ASSISTED ELECTROMAGNETIC FIELD AND GREEN’S TENSOR

Using the macroscopic QED formalism [S1, S2], the Hamiltonian for the vacuum EM field in the presence of the
surface can be written as

ĤF =
∑
λ=e,m

∫
d3r

∫
dω ~ω f̂ †λ (r, ω) · f̂λ (r, ω) , (S17)

with f̂ †λ (r, ω) and f̂λ (r, ω) as the bosonic creation and annihilation operators respectively that take into account
the presence of the media. Physically these can be understood as the ladder operators corresponding to the noise
polarization (λ = e) and magnetization (λ = m) excitations in the medium-assisted EM field, at frequency ω, created
or annihilated at position r. The medium-assisted bosonic operators obey the canonical commutation relations[

f̂λ (r, ω) , f̂λ′ (r′, ω′)
]

=
[
f̂ †λ (r, ω) , f̂ †λ′ (r′, ω′)

]
= 0, (S18)[

f̂λ (r, ω) , f̂ †λ′ (r′, ω′)
]
8 = δλλ′δ (r− r′) δ (ω − ω′) . (S19)

The electric field operator evaluated at the position of the nth emitter is given as

Ê (rn) =
∑
λ=e,m

∫
d3r

∫
dω
[ ¯̄Gλ (rn, r, ω) · f̂λ (r, ω) + H.c.

]
, (S20)

where the coefficients ¯̄Gλ (r1, r2, ω) are defined as

¯̄Ge (r, r′, ω) =iω
2

c2

√
~
πε0

Im[ε (r′, ω)] ¯̄G (r, r′, ω) , (S21)

¯̄Gm (r, r′, ω) =iω
2

c2

√
~
πε0

Im[µ (r′, ω)]
|µ (r′, ω)|2

∇× ¯̄G (r, r′, ω) . (S22)

Here ε(r, ω) and µ(r, ω) refer to the space-dependent permittivity and permeability, and ¯̄G (r1, r2, ω) as the Green’s
tensor for a point dipole near a planar semi-infinite surface [S1–S3]. The Green’s tensor is defined as the solution to
the Helmholtz equation in the presence of the boundary conditions

∇×∇× ¯̄G (r, r′, ω)− ω2

c2 ε (r, ω)µ (r, ω) ¯̄G (r, r′, ω) = δ (r− r′) I. (S23)

The total Green’s tensor can be expressed as

¯̄G (r1, r2, ω) = ¯̄Gfree (r1, r2, ω) + ¯̄Gsc (r1, r2, ω) , (S24)

where Gfree (r1, r2, ω) and Gsc (r1, r2, ω) refer to the free space and scattering components of the total Green’s tensor.
For a point dipole located at the position r1 near an infinite planar half-space, one can write the scattering Green’s
tensor as [S1]

¯̄Gsc (r1, r2, iξ) = 1
8π

∫ ∞
0

dk‖
k‖

κ⊥
e−κ⊥Z

 J0(k‖x12) + J2(k‖x12) 0 0
0 J0(k‖x12)− J2(k‖x12) 0
0 0 0

 rs

− c
2

ξ2

 κ2
⊥
[
J0(k‖x12)− J2(k‖x12)

]
0 2k‖κ⊥J1(k‖x12)

0 κ2
⊥
[
J0(k‖x12) + J2(k‖x12)

]
0

−2k‖κ⊥J1(k‖x12) 0 2k2
‖J0(k‖x12)

 rp

 , (S25)

with |r1 − r2| = r, (r1 + r2) · ez = Z, and we have defined the relative coordinate vector between the points r1 and
r2 as r1−r2

|r1−r2| ≡
(
x12
r , 0,

z12
r

)T
. Here rs,p are the Fresnel reflection coefficients for the s and p polarizations reflecting
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off the surface, and κ2
⊥ = ξ2/c2 + k2

‖. Assuming that the medium can be treated as homogeneous and isotropic, and
can be well-described in terms of its bulk optical properties at the length scales of the emitter-surface separations, we
can consider that all the information about the surface material is accounted for in the following Fresnel reflection
coefficients

rp (κ⊥, iξ) =
ε (iξ)κ⊥ −

√
(ε (iξ)µ (iξ)− 1) ξ2/c2 + κ2

⊥

ε (iξ)κ⊥ +
√

(ε (iξ)µ (iξ)− 1) ξ2/c2 + κ2
⊥
,

rs (κ⊥, iξ) =
µ (iξ)κ⊥ −

√
(ε (iξ)µ (iξ)− 1) ξ2/c2 + κ2

⊥

µ (iξ)κ⊥ +
√

(ε (iξ)µ (iξ)− 1) ξ2/c2 + κ2
⊥
. (S26)

The free space Green’s tensor between the points r1 and r2 is given as

¯̄Gfree (r1, r2, iξ) = c2e−ξr/c

4πξ2r3


g
(
ξr
c

)
− h

(
ξr
c

)
x2

12
r2 0 −h

(
ξr
c

)
x12z12
r2

0 g
(
ξr
c

)
0

−h
(
ξr
c

)
x12z12
r2 0 g

(
ξr
c

)
− h

(
ξr
c

)
z2

12
r2

 . (S27)

where g (χ) ≡ 1 + χ+ χ2, h (χ) ≡ 3 + 3χ+ χ2.

SUPERRADIANCE MASTER EQUATION IN THE PRESENCE OF A SURFACE

To find the influence of the medium-assisted EM field on the system of the two-level emitters, we derive the surface-
induced modifications to the master equation describing the dynamics of the corresponding reduced density matrix
ρ̂S [S4]. Assuming that the dipoles are weakly coupled to the EM field, and that the EM field bath correlations
decay much faster than the relaxation time scale for the emitters’ internal dynamics, we use the Born and Markov
approximations to write the equation of motion for ρ̂S as [S4, S5]

dρ̂S
dt

= − 1
~2 TrF

∫ ∞
0

dτ
[
H̃int (t) ,

[
H̃int (t− τ) , ρ̂S(t)⊗ ρ̂F

]]
, (S28)

where H̃int(t) ≡ e−i(ĤS+ĤF )tĤinte
i(ĤS+ĤF )t stands for the interaction Hamiltonian in the interaction picture. The

reduced density matrix ρ̂F = |0〉 〈0| refers to that of the vacuum EM field. Tracing out the field, we obtain the surface-
modified second-order Born-Markov master equation for the system dynamics as given by Eq. (2) in the main text.
We observe that for a collection of coincident dipoles (x0 → 0), one has Ωij = Ωkl and Γij = Γkl, for all {i, j, k, l}.
It follows that the overall symmetry of the master equation remains the same as for free space superradiance master
equation [S6], with the Dicke states |J = N/2,M = 0〉 and |J = 0,M = 0〉 corresponding to the super- and subradiant
states for the N emitters.

COLLECTIVE SPONTANEOUS EMISSION NEAR METAL SURFACE

For two z-polarized dipoles at a distance z0 near a metal half-space described by the Drude model with ε (ω) =
1− ω2

p

ω2+iγω , the surface-modified spontaneous emission for the individual dipoles is given as

Γ(sc)
nn = 3Γ0

2 Im
[
i

∫ 1

0
dk̃⊥e2ik̃⊥z̃0

(
1− k̃2

⊥
)
rp
(
−ik0k̃⊥, ω0

)
+
∫ ∞

0
dκ̃⊥

(
1 + κ̃2

⊥
)
e−2κ̃⊥z̃0rp (κ̃⊥, ω0)

]
, (S29)

with z̃0 = k0z0. In the non-retarded limit, we get the modification to the dissipation as

Γ(sc)
nn ≈

3
8z̃3

0
Im
[
ε (ω0)− 1
ε (ω0) + 1

]
Γ0 ≈

3ω0γ

4ω2
p z̃

3
0

Γ0, (S30)

which can be understood as the dissipative interaction between the nth dipole and its image of strength
[
ε(ω0)−1
ε(ω0)+1

]
d.

We have assumed here that ωp � {ω0, γ}. It can be seen that the for the chosen parameter values in the main text,
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FIG. S1. CP force on subradiant states of N = 6 emitters placed at a distance of k0z = 0.1 away from a Gold surface as a
function of their mutual spacing x0. The horizontal lines give the force on the states with all the emitters in the excited (solid)
and ground (dashed) states.

one gets Γ(sc)
nn ∼ 103Γ0, as can be seen from the blue dotted line in Fig. 2 (b). For the surface modified dipole-dipole

interaction with the dipoles separated by distance x0, we have

Γ(sc)
mn = 3Γ0

2 Im
[
i

∫ 1

0
dk̃⊥e2ik̃⊥z̃0

(
1− k̃2

⊥
)
J0
(
k̃‖x̃0

)
rp
(
−ik0k̃⊥, ω0

)
+
∫ ∞

0
dκ̃⊥

(
1 + κ̃2

⊥
)
e−2κ̃⊥z̃0J0

(
k̃‖x̃0

)
rp (κ̃⊥, ω0)

]
, (S31)

with x̃0 = k0x0. In the non-retarded limit, this yields

Γ(sc)
mn ≈

3
2z̃3

0
Im
[
ε(ω0 − 1
ε(ω0 + 1

]
g (x̃0, z̃0) Γ0, (S32)

where g (x̃0, z̃0) ≡
∫∞

0 dκ
(
1 + κ2) e−2κz̃0J0

(√
1 + κ2x̃0

)
. In the limit of coincident dipoles ( x̃0 → 0), this is equal to

the single emitter spontaneous emission as given by Eq. (S30). Thus, as x̃0 → 0, the super- and subradiant collective
spontaneous emission rates are given as Γsup ≈ 2Γ(sc)

11 , and Γsub ≈ 0, as can be seen from Fig. 2 (b) in the main text.

N-EMITTER SUBRADIANT STATES

Considering the subradiant state |J = 0,M = 0〉, we first note that they have a degeneracy given by [S7]

dG = N !
(1 +N/2)! (N/2)! .

This degeneracy grows rapidly with N and, in general, each subradiant state in this degenerate subspace has an
intricate structure when expressed as a superposition in the product state basis over the energy eigenstates of the
emitters. As a result, the general analytical expressions for the sub-radiant state CP force become cumbersome.
Nonetheless, for small numbers of emitters N ∼ 10, we have checked that all of the subradiant states demonstrate
suppressed CP forces at small emitter separations and show the result calculated numerically for N = 6 emitters
(dG = 5) in Fig. S1.

∗ kanu@umd.edu
† Prasanna.Venkatesh@uibk.ac.at
‡ pierre@optics.arizona.edu

[S1] S. Y. Buhmann, Dispersion Forces I (Springer-Verlag, Berlin, 2012).

mailto:kanu@umd.edu
mailto:Prasanna.Venkatesh@uibk.ac.at
mailto:pierre@optics.arizona.edu


4

[S2] S. Y. Buhmann, Dispersion Forces II (Springer-Verlag, Berlin, 2012).
[S3] T. Gruner and D. G. Welsch, Green-function approach to the radiation-field quantization for homogeneous and inhomo-

geneous Kramers-Kronig dielectrics, Phys. Rev. A 53, 1818 (1996).
[S4] K. Sinha, Repulsive vacuum-induced forces on a magnetic particle, Phys. Rev. A (accepted for publication) (2018).
[S5] H.-P. Breuer, and F. Petruccione, Theory of open quantum systems (Oxford University Press, New York, 2002).
[S6] M. Gross, and S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission, Phys. Rep. 93, 301

(1982).
[S7] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambdridge, 1995).

https://doi.org/10.1103/PhysRevA.53.1818
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8

	Collective effects in Casimir-Polder forces
	Abstract
	 References
	 Medium-assisted electromagnetic field and Green's tensor
	 Superradiance master equation in the presence of a surface 
	 Collective spontaneous emission near metal surface
	 N-emitter Subradiant states
	 References


