High-dimensional entanglement in large-scale Silicon quantum photonics

S. Paesani\(^1\), J. Wang\(^{1,2}\), Y. Ding\(^3\), R. Santagati\(^1\), P. Skrzypczyk\(^4\), A. Salavrakos\(^5\), J. Tura\(^6\), R. Augusiak\(^7\), L. Mančinska\(^8\), D. Bacco\(^3\), D. Bonneau\(^1\), J. Silverstone\(^1\), Q. Gong\(^2\), A. Acín\(^5\), K. Rottwitt\(^1\), L. Oxenløwe\(^3\), J. O’Brien\(^1\), A. Laing\(^1\), M. Thompson\(^1\)

\(^1\)QETLabs, University of Bristol, BS8 1FD, Bristol, United Kingdom; \(^2\)State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China; \(^3\)SPOC, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; \(^4\)H. H. Wills Physics Laboratory, University of Bristol, BS8 1TL, Bristol, United Kingdom; \(^5\)ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; \(^6\)Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; \(^7\)Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland; \(^8\)QMath, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark; \(^9\)ICREA - Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23 Barcelona, 08010, Spain.

Photons represent a promising platform for multidimensional quantum technologies, offering various degrees of freedom for encoding and processing qudits (e.g., orbital angular momentum, time-bin and frequency [1,2]). We report the experimental implementation of a novel approach for the generation and processing of high-dimensional entangled systems based on large-scale integrated quantum photonics [3]. The experiment is performed using a Silicon quantum photonic chip able to create, control and analyze on-chip high-dimensional entanglement up to dimensions 15×15 (see Fig. 1A and inset). The photonic chip integrates more than 500 optical elements, including 16 photon-pair sources based on χ^3 non-linearities, 93 phase-shifters and 122 beam-splitters. Bipartite path-encoded high-dimensional systems with an arbitrary degree of entanglement are obtained by the coherent excitation of an array of identical integrated photon-pair sources, and integrated circuits allow high fidelity arbitrary measurements on-chip. In Fig. 1B the tomographies of the generated maximally-entangled states are reported for various local dimensions, and an example for $d = 12$ is shown in Fig.1C presenting a fidelity of 81%. The quality of the generated high-dimensional entanglement and the universality of the photonic processor are further exploited to experimentally implement a wide range of multidimensional applications, such as violation of high-dimensional Bell inequalities [4], self-testing of high-dimensional states, randomness generation and dimensional witnessing.

References