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Integrated micro- and nano-structures allow for the efficient generation of photon pairs via parametric fluores-
cence, thanks to the enhancement of the light-matter interaction due to light spatial confinement in small volumes.
It has been shown that the efficiency of spontaneous four wave mixing (SFWM) in a silicon micro ring resonator
can range up to 10 orders of magnitude larger than in bulk silicon [1] . Yet the advantages of using integrated
devices go well beyond the sole efficiency improvement, for micro structures grant an unprecedented control over
the properties of generated non-classical light. For instance, one can engineer the spectral correlations of the gen-
erated photons at a level that is hardly accessible using bulk sources, with the generation of either energy-entangled
to nearly-uncorrelated photon pairs [1,2] . It is also possible to design integrated microring resonators to indepen-
dently tune the spectral properties of the resonances involved in the SFWM process by utilizing an interferometric
coupling scheme and achieve a Schmidt number arbitrarily close to unity (see Fig.1) [3-5]. Thanks to such a flex-
ibility offered by integrated structures, energy is also emerging as a usable degree of freedom for qbit and qudit
encoding in the context of photon pairs and multipartite states [6,7].
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Fig. 2: (a) JSI for conventional single-channel
system with equal quality factors (QP =
QS = QI = 5 ⇥ 104), exhibiting residual anti-
correlation that leads to a Schmidt number K =
1.09. (b) JSI for system with pump quality
factor much smaller than those of signal/idler
(QP = 5⇥103, QS = 1.1⇥105,QI = 3.3⇥104);
the energy correlation has been almost com-
pletely eliminated, yielding K = 1.003. Both
JSIs assume a pump pulse sufficiently broad
to excite the entire pump resonance. The fre-
quency axes are plotted in units of the respec-
tive signal/idler FWHM linewidths DnS,I .

and can be expressed as

F(wS,wI) µ
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2

LS(wS)LI(wI), (1)

where LJ(w) = ((w �w(0)
J )2 +(w(0)

J /2QJ))
�1 is a Lorentzian function with characteristic width w(0)

J /2QJ for a reso-
nance at frequency w(0)

J having quality factor QJ . The function F contains the effects of energy conservation and the
dynamics of the pump pulse coupling into the resonator,

F(W) =
Z

dwaP(w)aP(W�w)LP(w)LP(W�w), (2)

where aP(w) is the spectral amplitude of the pump pulse incident on the resonator. When QP ⌧ QS,QI , and the pump
pulse has bandwidth comparable to or greater than w(0)

P /2QP (i.e. a pump resonance that is broader than the signal/idler
resonances, and a pump pulse with similarly broad spectrum), the function F(wS +wI) is essentially constant over the
domain defined by the much narrower Lorentzians LS and LI in (1). Thus in this regime the JSI is a separable product
of the signal and idler frequency variables, with a Schmidt number K = 1.

The JSI distributions for a structure with equal quality factors and one with QS and QI significantly larger than
QP are displayed in Fig. 2a and 2b, respectively, clearly indicating the improvement in the separability of the state.
These are calculated by a full numerical simulation of the biphoton wavefunction for the structure shown in Fig 1.
We have also confirmed that the full, complex biphoton wavefunction (and not merely its squared modulus, the JSI)
corresponding to Fig. 2b is also uncorrelated, proving the lack of energy entanglement.
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Figure 1: Joint spectral intensity (arb. units) for (a) conventional single-channel system with equal quality factors
and (b) a structure with a interferometric couplers and optimized resonance widths
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